Renewable Energy

- Why wind and solar will not work

Søren Hansen

Power supply

Demand in a typical day

Power supply

Traditional generation

Power supply

Output from wind and solar

Wind and solar on their own

3 week period

Wind and solar on their own

• The whole year

"Dunkelflauten"

Germany, Dec. 2022. Demand & output from wind & solar

Source: Rolf Schuster, Vernunftkraft.de

Solar and wind as energy sources

• How to do?

What to do?

- Remedies proposed:
- Demand flexibility
- Regional cooperation
- Biomass
- Energy storage

Demand flexibility

• 5 fictive regions:

Demand: 20 GW

Gen.: 20 GW

Α

Demand: 20 GW

Gen.: 20 GW

C

Demand: 20 GW

Gen.: 20 GW

В

Demand: 20 GW

Gen.: 20 GW

D

Demand: 20 GW

Gen.: 20 GW

Ε

• 1 region's output = 0

• 4 regions close to zero

• USA Dec. 2020: Wind generation

Source: U.S. Energy Information Administration, Hourly Electric Grid Monitor

Low output overall:

Demand: 20 GW

Gen.: 5 GW

Α

Demand: 20 GW

Gen.: 5 GW

C

Demand: 20 GW

Gen.: 5 GW

В

Demand: 20 GW

Gen.: 5 GW

D

Demand: 20 GW

Gen.: 5 GW

Ε

Biomass?

• Backup for wind and solar

Biomass	Yearly
Requirement, PJ	120
Req. per person, GJ	20
Globally available per person, GJ	10

Storage of electricity

- Batteries
- Hydrogen
- Power to X

Batteries as back up

Batteries

Klimarealisme,dk

- Car battery, 60 kWh:
 - 6000 cells

Power generation

Production from wind and solar

Batteries

- MW power
- MWh energy

Grid-scale batteries

• Largest in the World:

		MW	MWh
Moss Landing	Capacity	400	1600
California, demand	Average power	30.000	
	Demand/hour		30.000
Coverage, Moss L.		1.3 %	3.2 minutes

Batteries

California

Source: The Manhattan Contrarian

Battery back up

Required capacity,California:

Batteries, costs

• Grid-scale projects, costs:

Period	US\$/kWh
2013-2018	1500
2022	600

• Lithium ion battery, grid scale (California):

Storage cost	US\$
Per kWh	600
Size required	25 billion kWh
Total investment	15 trillion US\$
California GDP	3.7 trillion US\$

Hydrogen

- H₂
- Produced by electrolysis

Hydrogen

Klimarealisme,dk

• Car, range: 600 km

Fuel tank	Gasoline	Hydrogen
Pressure, bar	1	700
Volume, liters	40	150
Weight of fuel, kg	28	5
Total weight, kg	40	87

Hydrogen – loss of energy

Hydrogen - safety

- Leakages
- Explosion risk

Many possibilities

Methanol production

- Proposed plant in Denmark
- Electrolysis:
 - Max 2 GW
- Avg. consumption:
 - 1.2 GW
- Power supply:
 - 3 GW wind
 - 1 GW solar
- Production/year:
 - 1 million tons of fuel

Power supply from wind and solar

- Power supply from wind and solar
 - 25 days, February-March

Methanol synthesis

• Need for outside supplies at constant consumption

Electrolysis with fluctuating demand?

- Key element in back up of wind and solar
- But how?

- LCOE Levelized Cost of Energy
- What we normally see

• FCOE – Full Cost of Energy

	Investment	
Direct costs	Fuel	LCOE
	Operation	
Cost of complete solution	Transmission	
	Storage	
	Backup	
Indirect costs	Environmental	
	Decommissioning	
	Land use	
No money involved	Material input	
	eROI - Energy balance	
	Lifetime	

Source: Schernikau & Smith

• FCOE – Material input

- eROI Energy Return on Investment
- Roman Empire, eROE = 2

Energy used for manufacture

• Activities, all powered by fossil fuels

Equipment involved

Elements of a wind/solar-based energy supply

Energy return on Investment

Source: Schernikau & Smith

Conclusion

Future role of energy technologies

Solar and wind

Very limited

Biomass

Limited

Hydro

As much as possible

Fossil fuels

Large, for many years

Nuclear

The future #1