StratoSolar
+1 408 821 7036
  • Home
  • Technology
    • Key Enabling Insights
    • PV Generation Platforms
    • Gravity Energy Storage
    • Communications Platform
    • Proven Technologies
    • Example Complete Energy Solution for the UK
    • Common Concerns >
      • Airspace
      • Hurricanes
      • FAQ
    • Gallery of Images >
      • Platform Shadow Videos
      • Japan Energy Solution Map
      • 2050 World Energy Sankey Diagram
      • 2050 Synthetic Fuel solution
      • 2050 Electricity solution
      • Climate Change Videos
  • Benefits
    • Low Cost Generation
    • Low Cost Energy Storage
    • Cost Reduction Roadmap
    • Sustainable and Scale-able
    • Zero Carbon
    • Energy Security
  • Contact Us
  • Blog
  • Login
    • Presentations
    • Gallery >
      • PV Documents >
        • PV Big Picture policy level document
        • PV California deployment
        • PV Japan deployment
        • PV UK deployment
        • Wind and Buoyancy Forces
  • Related Sites
  • Solve for x Videos

Why I focus so much on PV economics 

2/8/2014

Comments

 
Alternative energy exists solely because of a political will to make it so.  It has been uneconomic from its modern inception in the 1970's, driven by the first oil crises. As a result, market driven economic viability has never been a central part of the alternative energy mindset.  At its core it has been driven by two perceptions. The first was simply the need for a clean fossil fuel replacement largely regardless of cost. The second was that given time, costs would reduce to make them more acceptable.  

The political will influenced government to provide subsidies to nurture the business. These subsidies now exceed $100B/y of investment worldwide and prop up a total investment of about $250B/y. However a business that depends so heavily on government support is subject to all the problems of such reliance. Firstly government support is volatile, driven by who wins elections. Secondly, subsidized industries are notoriously inefficient. Any long term subsidy regime encourages business that live off the subsidies with little or no incentive to improve.

The perception that costs would reduce has been borne out by time, but the path has been a rocky one. The recent history of PV shows the erratic nature of this progress.  On a day to day basis no one sees the big picture. When PV prices were stable for a decade, the perception was of stagnation which led to betting on thin film PV. When prices were falling the perception was they would continue to fall, regardless of fundamentals. Also, market size of a heavily subsidized industry is not perceived as inextricably tied to the size of subsidy.

If government continues to support the PV business, costs will decline to a point where PV is competitive for some fraction of energy for sunny locations, but to be a complete solution other technologies like long distance transmission and storage have to become economically viable as well. The current rate of improvement put that point out beyond 2050. This is the status quo. Governments willing to provide limited subsidy, a business happy to live of this subsidy with its current size and rate of growth and an alternative energy political consensus that thinks this is actually working.

This status quo is not reducing CO2 emissions and will not reduce CO2 emissions out to 2050. Realists point out that change of the degree necessary to reduce CO2 takes many decades and huge political will. While alternative energy imposes large new costs, the current small political will for change is directly measured by the small amount we are collectively willing to pay for subsidies. The only way to increase the political will is to reduce the cost at a faster rate or better yet turn things around and make clean energy an economic benefit.  This perception is sadly lacking.

The optimists place their hope in technological breakthroughs, and so we get daily updates on basic research, most of which we know will go nowhere, but create the illusion of progress.  The sad reality is that basic research takes decades to make it from the lab to the market and decades more to achieve large scale.

To scale quickly a technology needs both a long gestation to viability and to be mass producible. PV has recently demonstrated that it is at this point. The rapid scalability has surprised governments that provided subsidies assuming a slower ability to scale. Germany spent over $150B in two years for about 15GW before they adjusted. China just ramped to over 12GW in one year from a standing start for a lot less.

So PV technology is at a point where we can make and deploy as much as we can afford. The problem is the high cost of the resulting  electricity, especially if you count the costs of intermittency and storage, is just too much money for economies to sustain.

StratoSolar is only PV in a new location. It reduces the cost of resulting PV electricity to market competitive levels and increases the reliability of the supply.  There is no new technology or resource that limits its ability to scale. If it is proven viable, the major thing that needs to scale is PV manufacturing, the thing that has already demonstrated scalability. This is a lot like computers in the late 1980s. A large CMOS semiconductor manufacturing business had matured and companies like Sun Microsystems that built computers based on this technology rapidly scaled to volume in the millions. This pattern repeated itself for PCs in the 10s to 100s of millions and recently for mobile phones in the billions, as the cost of computers reduced with volume over time. The common elements are ability to scale supply and an affordable product with sufficient demand to match the supply. 

From an investment perspective the risk is like betting on a Sun Microsystems. They had engineering and market risk, but they were fundamentally enabled by available semiconductor technology. They were small investments in small teams that integrated existing technologies to build new products for very large new businesses. The market demand they produced could be met  by the scalable semiconductor supply. Similarly, StratoSolar can create a demand that can be met by a scalable PV semiconductor supply.

It’s continuing the triumph of the semiconductor age.

by
Edmund Kelly


Comments
comments powered by Disqus

    Ed Kelly

    President of StratoSolar

    View my profile on LinkedIn

    Archives

    February 2023
    November 2022
    October 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    March 2021
    January 2021
    November 2020
    August 2020
    July 2020
    June 2020
    February 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    April 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013
    August 2013
    July 2013
    June 2013
    May 2013
    April 2013
    March 2013
    January 2013
    December 2012
    November 2012
    October 2012
    September 2012
    August 2012
    July 2012
    June 2012
    May 2012
    April 2012
    March 2012
    February 2012
    December 2011
    November 2011
    October 2011
    September 2011
    August 2011
    July 2011
    June 2011
    May 2011
    November 2010

    Categories

    All
    All Energy
    Alternative Energy
    Bill Gates
    China
    Clean Energy Investment
    Clean Energy Price
    Desalination
    Developing World
    Energy
    Energy-investment
    Energy Policy
    Germany
    Helium
    Japan Energy Pv
    Land Use
    O3b
    Pv
    PV Bubble
    Pv Subsidies
    Stratosolar
    Us Subsidies
    Wireless Communications

    RSS Feed

 © 2023 StratoSolar Inc. All rights reserved. ​618 S. 8th Street, Suite 400B, Richmond, CA 94804
Contact Us